CS 505: Introduction to
Natural Language Processing

Wayne Snyder
Boston University

Lecture 16 — Neural Network Tuning and Advanced Features

(Model Design + Hyperparameters) — Model Parameters

The building blocks: The knobs that you The variables ’
| | can tum:) | learned from the

- #layers \ < - Leaming - < data: '

Activations | | (‘ '

opoul - weights ’

Lecture Plan

Best Practices and Advanced Features of Neural Networks for NLP

o Training vs. Retraining

o Avoiding recomputation by loading and saving
o Cross-Validation

o Optimizers and Learning Rates

o Regularization: L1, L2, Dropout

o Layer/Batch Normalization

o Early Stopping

o Batch Size (and an argument for asking chatGPT)

Initializing and Training Models

Simple question: What is the difference between initializing your model
and training it in the same cell, or doing it in two different cells?

o device = "cuda" if torch.cuda.is_available() else "cpu"

print(f"Using {device}")
print()

num_epochs = 500

spam_ham model = SpamModel().to(device)

training_losses = np.zeros(num_epochs)
val_ losses = np.zeros(num_epochs)

training_accuracy = np.zeros(num_epochs)
val_accuracy = np.zeros(num_epochs)

loss_fn = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(spam_ham model.parameters(),lr=0.01)

optimizer = torch.optim.Adam(spam_ham model.parameters(),lr=0.001)
optimizer = torch.optim.Adagrad(spam_ham model.parameters(),lr=0.01)
optimizer = torch.optim.RMSprop(spam_ham model.parameters(),lr=0.001

for epoch in tqdm(range(num_epochs)):
training
spam_ham_model.train()
t_loss = 0.0
t_num correct = 0

for X_train batch,¥Y train batch in spam_ham training_dl:
X_train_batch = X train_ batch.to(device)
Y train batch = Y train batch.to(device)

optimizer.zero_grad()

Y train_hat = spam ham model(X_train batch)
loss = loss_fn(Y_train_hat,¥ train_batch)
loss.backward()

optimizer.step()

t_loss += loss.item()

>

device = "cuda" if torch.cuda.is_available() else "cpu"
print(£f"Using {device}")

print()
patience = 20 # how many epoches to wait with no improvement in
loss score before termination

num_epochs = 1000

retraining = True
retraining = False

early use_stopping = True
use_early_ stopping = False

if not retraining:
spam_ham model = SpamModel().to(device)
training_losses = np.zeros(num_epochs)
val_losses = np.zeros(num_epochs)

training_accuracy = np.zeros(num_epochs)
val_accuracy = np.zeros(num_epochs)

loss_fn = nn.CrossEntropyLoss()

optimizer = torch.optim.SGD(spam ham model.parameters(),lr=0.01)

optimizer = torch.optim.Adam(spam_ham model.parameters(),lr=0.001)
optimizer = torch.optim.Adagrad(spam_ham model.parameters(),lr=0.01)

optimizer = torch.optim.RMSprop(spam_ham model.parameters(),lr=0.001)

for epoch in tgdm(range(num_epochs)):
training
spam_ham model.train()
t_loss = 0.0
t_num correct = 0

for X_train_batch,Y_train batch in spam ham training dl:
X_train batch = X train_batch.to(device)
Y train batch = Y train_batch.to(device)

Initializing and Training Models

Simple question: What is the difference between initializing your model
and training it in the same cell, or doing it in two different cells?

Answer: Nothing, as long as you always remember to run both cells for each
training, especially if you change the hyperparameters!

What if you don’t?

Then you will be retraining an already-trained model!
Fine if that is what you intend, but easy to forget, and you will get strange results:

Training for 10,000 epochs Retraining for 1000 more
Training and Validation Loss S Training and Validation Loss
0.0035 A —— N = Training
—— Training A o
0.0030 — Validation 0:90065 4 validation
i P - , 0-00060 1
g 0.0020 8
0.00055
0.0015 - L gl
0.0010 L _________————""_—_o—.oooso |
0.0005 1, ' } j i e I . — ; . ; .
0 2000 4000 6000 8000 10000 0 200 400 600 800 1000

Epochs Epochs

i ion . 7 78.
Least Validation Loss 0.000675 found at epoch 9996. Tmast Validatlon Lous' 9009078, Tound ab epoch: 176
Final Training Loss: 0.000468

Final;Training lons: ..0:000527 Final validation Loss: 0.000681

Final Validation Loss: 0.000675

Initializing and Training Models

Here is a nice way to avoid confusion and have both alternatives:

: 1 # test if GPU is available

3 device = "cuda" if torch.cuda.is_available() else "cpu
4 print(f"Using {device}")
5 print()

num_epochs = 10000

9 # Normally, will create model and train it in one run
10 # If want to retrain the model with more epoches, set next to True

12 # retrain = True
retrain = False

5 if not retrain:

16 spam_ham model SpamModel().to(device)
17 train loss np.zeros(num_epochs)
18 val_ loss = np.zeros(num_epochs)

20 train_accuracy
21 val_accuracy

np.zeros(num_epochs)
np.zeros(num_epochs)

o o
.

23 learning_rate
24 learning rate = 0.01

25 # learning rate = (0.001
26 # learning rate 0.0001

28 # optimizer = torch.optim.SGD(spam ham model.parameters(),lr=learning rate)

29 # optimizer = torch.optim.Adam(spam ham model.parameters(),lr=learning rate)

310 optimizer = torch.optim.Adagrad(spam ham model.parameters(),lr=learning rate)
31 # optimizer = torch.optim.RMSprop(spam ham model.parameters(),lr=learning rate)

Avoiding Redundant Computations

Try to avoid redoing the same expensive operations over and over!

We saw this with the Brown Corpus, which downloads the first time to
your local disk, and thereafter checks to see if you already have it:

In [2]: | import numpy as np
2 import nltk
} # First time you will need to download the corpus:

Run the following and download the book collection

#nltk.download shell()

In [3]: | from nltk.corpus import brown
! nltk.download('brown')

[nltk data] Downlcading package brown to
[nltk data] /Users/waynesnyder/nltk data...
[nltk data] Package brown is already up-to-date!

Out[3]: True

Avoiding Redundant Computations

You can do this with any data structure, such as tensors or numpy arrays.

Here is a way to do that with HW 04, Problem 2:

def load glove model(file):

import os

if os.path.exists(data_dir+'texts vector.pt'):
texts_vector = torch.load(data_dir+'texts vector.pt’)

—_—
else:

glove _model = load glove model(data dir+'glove.€B/glove.6B.100d.txt")

sp = spacy.load('en core web sm')

emails raw = pd.read csv(data_dir+'data pa5/enron spam ham.csv').to_numpy()
texts vector = []

for text,label in tgdm(emails_raw):
text_vector = torch.tensor([0])*100,dtype=torch.float32) #size of the word vector
document=sp(text.lower())
count = 0

for word in document:
if str(word) in glove model:

str_word = str(word)
text vector = text vector + glove model[str word)]
count += 1

if count>0:
text vector /= count

texts_vector.append((text_vector,torch.tensor(label,dtype=torch.int64)))

torch.save(texts_vector,data dir+'texts vector.pt')

Thereafter, if you
already have the
file, just read it in
using

torch.load(..)

The first time, do
the expensive
computation, and
save it to disk using
torch.save(...)

Avoiding Redundant Computations

And of course you can save already-trained models, and not have to
retrain them to use them later; again, we did this in HW 04 Problem 2:

now save the best model found so far, defined by least validation loss

Use copy.deepcopy (..)to
R e R avoid doing expensive /O in
the main training loop!

if val loss[epoch] < least val loss:
least val loss val loss[epoch]
: best_ﬁodei cop§.deepcopy(spam_ham_model) # make deep copy to avoid I/0 cost each time
9 best_epoch epoch

I

testing using the best model found during training
5 best _model.eval()

! testing_num correct = 0

Use the best model found

19 for X test_batch,Y test _batch in spam ham test_dl: I 1 I
20 X_test _batch = X test_batch.to(device) durlng Val|dat|0n tO do the
Y test batch = Y test batch.to(device) teshng!

Y hat_test = best model(X test batch)
testing num correct += (torch.argmax(¥ hat test,dim=1) == ¥ test_batch).float().sum()
test_accuracy = testing num correct / N_test

32 # Save the best model found during this training

Save and load the model as
you wish!

torch.save(best_model, data dir+'best spam ham model.pt’)

You can load it any time to use it:

39 spam_ham model = torch.load(data_dir+'best spam ham model.pt')

Cross-Validation

Cross-Validation is a dynamic alternative to choosing a fixed validation set:

o Split the data into a training set and a testing test, and hold out the testing set as usual;

o Now split the training set into K parts (“folds”) of approximately equal size;

o Training occurs in cycles of K epochs:

For each k in range(K):
Train on all Folds except Fold k;
Validate on Fold k

Split 1
Split 2
Split 3
Split4

Splits

Training data

All Data

Test data

Fold1 || Fold2 | Fold3

Fold 4

Fold 5

Fold1 || Fold2 || Fold3

Fold 4

Fold 5

Fold1 || Fold2 | Fold3

Foid1 || Fold2 | Fold3

Fold 4

Fold 4

Fold 5

Fold 5

Fold1 || Fold2 || Fold3

Foldl‘ Fold 2 ‘ Fold 3

Fold 4

Fold 4

Fold 5

Fold 5

Final evaluation {‘

> Finding Parameters

J

Test data

o At the conclusion of cycle of K epochs, take the mean of the loss and accuracy metrics;

o Report performance metrics for these means every K epochs.

Cross-Validation

Cross-Validation and Static Validation have symmetric advantages and
disadvantages:

Static validation is

o Simpler and faster;

o Very dependent on quality of split, especially for small or unbalanced data sets:
« May overfit on that specific set;
« Performance metrics may be skewed.

Cross-validation is
o More complex to implement, less efficient;
o Uses entire training set for validation, so exact split is less critical;
» Less possibility of overfitting;
* More accurate performance metrics
o Does not well as work for time-series data sets (e.g., stock prices, weather)

Punchline: Static validation is fine for large datasets (always shuffle!!);
Cross-Validation should be used for small or unbalanced data sets.

Cross-Validation

In Pytorch, you can simply create K different DataLoaders, and DIY as just

described; sklearn also has a popular library KFold to make it simple but inefficient:

from sklearn.model selection import KFold

from torch.utils.data import Dataloader, Subset

dataset = MyDataset ()
k fold = KFold(n splits=5)

for train indices, val indices in k fold.split (dataset):

Using Subset to create datasets for training and validation

train subset = Subset (dataset, train indices)

val subset = Subset (dataset, val indices)

train loader = Dataloader (train subset, batch size=32, shuffle=True)
val loader = Dataloader (val subset, batch size=32)

Now you can use train loader and val loader in your training and
validation loops

Optimizers: SGD, Adam, Adagram, RMSProp...

SGD (Stochastic Gradient Descent):

o Classic optimizer that updates the weights by taking a step in the direction of
the negative gradient of the loss function

{LL"IIU\V — u?()l(l _ 7’ >< vaOSS

"1
1(6,8,) é

Can set various parameters such as

o Learning Rate Schedules with
» Step decay: reduce the learning rate by some factor each epoch
+ Exponential decay: Decrease the learning rate exponentially over the epochs;
» 1/t decay: reduce the Ir as the inverse of the square root of the number of epochs;

o Momentum:
* Add a fraction (between 0 and 1) of the previous weight update to the current update
* Helps accelerate in the relevant direction and dampen ¢

Still not guarantee reaching

Momentum global minima, but give some

o Weight decay: hope

cost
Movement =

Negative of dL/dw + Momentum

« Equivalent to L2 regularization (later in the lecture)

=—p Negative of AL / dw
«eesp Momentum

——p Real Movement

Optimizers: SGD, Adam, Adagram, RMSProp...

SGD (Stochastic Gradient Descent):

o Classic optimizer that updates the weights by taking a step in the direction of
the negative gradient of the loss function

| Whew = Wold — 1 X Vy Loss
Can set various |

Adagrad (Adaptive Gradient Algorithm):

o Stored a running sum of the squares of past gradients and divides the learning
rate by the square root of the running sum:

T — . _n . .
Whew — Wold p: X vu'l-‘obb St = 841+ V,Loss ® V, Loss

\/ 8¢

Pro: Adapts to size of gradients. Con: Can adapt too much and stop learning!

RMSProp (Root Mean Square Propagation):

o More effective version of Adagrad, using a moving average of squared past
gradients:

$; = Bs;_1+ (1 —B)V,Loss ® V,Loss

RMSProp tends to work better for very deep neural networks

Optimizers: SGD, Adam, Adagram, RMSProp...

Adam (Adaptive Moment Estimation):

Improves on Adagrad and RMSprob by combining both approaches with regard to
past gradients:

o Keep a moving weighted average of both the past gradients and the squared
past gradients (called first and second moments), and adjust the learning rate
accordingly.

o Corrects for initial bias in the moving averages, so tends to have more stable
starts than other algorithms.

Punchlines:

o SGD has many parameters which can be tuned for excellent performance, and
may lead to better performance.

o Adam is the default optimizer for many tasks because it tends to “work well out
of the box” without a lot of tuning.

Regularization: L1, L2, Dropout

Regularization attempts to prevent overfitting by preventing models from becoming too

complex. There is a large variety of ways to accomplish this:

o Adding noise:
* Produce random fluctuations in the data through augmentation;
« The network generalizes instead of focusing on the details.

o L1 Regularization (Lasso Regression):
« Adds a penalty proportional to the absolute value of the coefficients:

12|wi|

» This prevents the parameters from becoming too large, limiting their range.

o L2 Regularization (Ridge Regression):
» Adds a penalty proportional to the square of the magnitude of the coefficients:

Awa

L2 is generally preferred, since L1 can force some parameters to 0.

Regularization: L1, L2, Dropout

L2 Regularization is accomplished in Pytorch using the weight_decay parameter in the

optimizer:

) # welght_ decay 0.02 is the strength of the L2 regularization

optimizer = torch.optim.Adam(spam_ham model.parameters(),lr=0.01, weight decay = 0.02)

The effect is to add the following penalty term to the loss L calculated during training:

(L1 regularization is not implemented in Pytorch and you would have to DIY.)

Regularization: L1, L2, Dropout

o Dropout

During training, parameters are set to 0 with some probability p
This prevents parameters from co-evolving and effectively memorizing the data

The knowledge implicit in the data is generalized throughout the network and not
localized in specific parameters

Note: Due to the
random nature of
dropout, different
neurons will be
dropped out for
each data
sample.

(a) Standard Neural Net (b) After applying dropout

Regularization: L1, L2, Dropout

Dropout in Pytorch is easily accomplished with a dropout layer build into the network

geometry:

class SpamModel(torch.nn.Module):

def

def

__init__ (self):

super (SpamModel, self). init__ ()
self.linearl = torch.nn.Linear(100,15)
self.activationl = torch.nn.ReLU()
self.linear2 = torch.nn.Linear(15,2)
self.dropout = nn.Dropout(0.4)

forward(self, x):

X = self.linearl(x)
X = self.dropout(x)
x = self.activationl(x)
X = self.linear2(x)

return x

dropout neurons with probability 0.4

Layer and Batch Normalization

Layer Normalization: For each output value from a layer:

o Compute its mean u and standard deviation ¢ ;

o Normalize to mean 0 and standard deviation 1; and then

o Scale and shift it by two parameters learned during training.
This is done after every individual data sample.

aal g L — + 3
cl/t’ T l' / 9 J Pre-activations at this |ou./er‘:

. unit Gaussions

Input !o\t/er

Yy - __.. .

Batch Normalization is the same

process, but applied to all layer T p
outputs for a whole mini-batch. ~ @ /“F

Normalization is also considered
to be a form of regularization, because it limits the range of parameters.

Layer and Batch Normalization

Why normalize layer and batch outputs?

o Helps gradient flow by avoiding disappearing or exploding gradients;

o Acts as a regularizer to avoid overfitting by introducing “useful noise”
into the parameters;

o Smooths the gradient landscape:
» Allows for higher learning rates and faster convergence;

« Makes weight initialization strategy less critical.

Normalization is particularly effective with deep networks.

Layer and Batch Normalization

Batch Normalization in Pytorch:

class BatchNormNet (nn.Module) :

def

def

__1init (self, input dim, hidden dim, output dim):
super (BatchNormNet, self). 1init ()

self.fcl = nn.Linear (input dim, hidden dim)
self.bnl = nn.BatchNormld(hidden dim)

self.fc3 = nn.Linear (hidden dim, output dim)
forward(self, x):

X = self.fcl (x)

x = self.bnl (x) # note that normalization is

x = F.relu(x) # done before relu or sigmoid

X = self.fc3(x)

return X

Early Stopping
Your goal is to find the best possible model for your task, typically measured by
o Minimum loss score
o Maximum accuracy score
o Optimal value of some other metric (specificity, F1, etc.)

The consensus view is that “it depends” but as a first approximation, loss is better
than accuracy.

There is no reason to overfit by continuing past this point, and there are simple
ways to implement early stopping:

o Stop when you reach some threshold of loss;

o Define a parameter patience, and stop training if your model does not
improve (i.e., the loss does not decrease) after patience epochs. Typical
values are 20 — 50 epochs.

Early Stopping

Early Stopping in Pytorch:

S — ———-
B
9 patience = 50 # how many epoches to wait with no improvement in
10 # loss score before termination
11
12 early use stopping = True
13 # use early stopping =~ Palse
14
87 # now save the best model found so far, defined by least validation loss
88
89 if epoch == (:
90 least val loss = val loss[epoch)
91 num epoches no improvement = 0
93 if val loss(epoch) < least val loss:
94 least val loss = val loss|epoch])
95 best model = copy.deepcopy(spam ham model) ¢ make deep copy to avoid I/0 cost each time
96 best epoch = epoch
97 num epoches no improvement = 0
98 else:
99 num epoches no improvement += 1
100
101 last epoch = epoch # save if early stopping
102
103 # early stopping
104
105 if use early stopping and num epoches no improvement == patience:
106 print(£"Early stopping at epoch {last_epoch}, no improvement in validation loss after {patience) epoches.”
107 break
108

Effect of Batch Size

You can’t do better in most cases than asking chatGPT to do the research and
summarize findings on all these matters. Maybe it meditates on its own creation?

Here is its excellent summary of the effect of batch size on training:

m What is the effect of batch size on training a neural network?

The batch size, which is the number of training examples used in one forward-backward
pass (one iteration), has a significant impact on the training dynamics and the performance

of a neural network. Here are the effects and considerations associated with different batch

sizes:

1. Computational Efficiency:
* Larger batches can benefit from parallel processing capabilities of modern GPUs,
leading to faster computation per sample.
* Smaller batches might not fully utilize the computational resources, especially on
powerful GPUs.
2. Memory Usage:
* Larger batches consume more memory on the GPU, which might limit the model size or
the maximum feasible batch size.

* Smaller batches are more memory-efficient.

Effect of Batch Size

3. Convergence Speed:

* Larger batches provide a more accurate estimate of the gradient. Fewer iterations per
epoch may lead to faster convergence in terms of epochs but not necessarily in terms of
wall-clock time.

* Smaller batches introduce noise in the gradient estimate, which can have a regularizing
effect and might help escape from local minima or saddle points. However, it might also
lead to more oscillatory convergence trajectories.

4. Generalization:

* There's empirical evidence suggesting that smaller batches can lead to models that
generalize better, possibly due to the aforementioned noise acting as a form of implicit
regularization.

* Larger batches may converge to sharper minima, which might not generalize as well to
the validation or test set. This has led to the idea that the noise in gradient estimates
from smaller batches can be beneficial.

5. Stability and Learning Rate:

* Larger batches often allow for larger learning rates as the gradient estimate is more
accurate. However, the optimal learning rate typically grows sublinearly with the batch
size.

* Smaller batches might require smaller learning rates to maintain stable training.

