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Lecture Plan

Best Practices and Advanced Features of Neural Networks for NLP

o Training vs. Retraining

o Avoiding recomputation by loading and saving

o Cross-Validation

o Optimizers and Learning Rates

o Regularization: L1, L2, Dropout

o Layer/Batch Normalization

o Early Stopping

o Batch Size (and an argument for asking chatGPT)

 



Initializing and Training Models
Simple question:  What is the difference between initializing your model 
and training it in the same cell, or doing it in two different cells?



Initializing and Training Models
Simple question:  What is the difference between initializing your model 
and training it in the same cell, or doing it in two different cells?

Answer: Nothing, as long as you always remember to run both cells for each 
training, especially if you change the hyperparameters!

What if you don’t?

Then you will be retraining an already-trained model! 
Fine if that is what you intend, but easy to forget, and you will get strange results:

                 Training for 10,000 epochs                             Retraining for 1000 more 



Initializing and Training Models
Here is a nice way to avoid confusion and have both alternatives:



Avoiding Redundant Computations

Try to avoid redoing the same expensive operations over and over!

We saw this with the Brown Corpus, which downloads the first time to 
your local disk, and thereafter checks to see if you already have it:



Avoiding Redundant Computations

You can do this with any data structure, such as tensors or numpy arrays.

Here is a way to do that with HW 04, Problem 2:

The first time, do 
the expensive 
computation, and 
save it to disk using 
torch.save(….)

Thereafter, if you 
already have the 
file, just read it in 
using 
torch.load(…)



Avoiding Redundant Computations

And of course you can save already-trained models, and not have to 
retrain them to use them later; again, we did this in HW 04 Problem 2:

Use copy.deepcopy(…)to 
avoid doing expensive I/O in 
the main training loop!

Use the best model found 
during validation to do the 
testing!

Save and load the model as 
you wish!



Cross-Validation

Cross-Validation is a dynamic alternative to choosing a fixed validation set:

o Split the data into a training set and a testing test, and hold out the testing set as usual;
o Now split the training set into K parts (“folds”) of approximately equal size;
o Training occurs in cycles of K epochs:

      For each k in range(K):
Train on all Folds except Fold k;
Validate on Fold k

o At the conclusion of cycle of K epochs, take the mean of the loss and accuracy metrics;
o Report performance metrics for these means every K epochs.  



Cross-Validation
Cross-Validation and Static Validation have symmetric advantages and 
disadvantages:

Static validation is 
o Simpler and faster;
o Very dependent on quality of split, especially for small or unbalanced data sets:

• May overfit on that specific set;
• Performance metrics may be skewed.

Cross-validation is
o More complex to implement, less efficient;
o Uses entire training set for validation, so exact split is less critical;

• Less possibility of overfitting;
• More accurate performance metrics

o Does not well as work for time-series data sets (e.g., stock prices, weather)

Punchline:  Static validation is fine for large datasets (always shuffle!!); 
Cross-Validation should be used for small or unbalanced data sets. 



Cross-Validation

In Pytorch, you can simply create K different DataLoaders, and DIY as just 

described; sklearn also has a popular library KFold to make it simple but inefficient:

from sklearn.model_selection import KFold

from torch.utils.data import DataLoader, Subset

dataset = MyDataset()

k_fold = KFold(n_splits=5)

for train_indices, val_indices in k_fold.split(dataset):

    # Using Subset to create datasets for training and validation

    train_subset = Subset(dataset, train_indices)

    val_subset = Subset(dataset, val_indices)

    train_loader = DataLoader(train_subset, batch_size=32, shuffle=True)

    val_loader = DataLoader(val_subset, batch_size=32)

    # Now you can use train_loader and val_loader in your training and 
validation loops



Optimizers: SGD, Adam, Adagram, RMSProp…

SGD (Stochastic Gradient Descent):
o Classic optimizer that updates the weights by taking a step in the direction of 

the negative gradient of the loss function

Can set various parameters such as 

o Learning Rate Schedules with
• Step decay: reduce the learning rate by some factor each epoch
• Exponential decay: Decrease the learning rate exponentially over the epochs;
• 1/t decay: reduce the lr as the inverse of the square root of the number of epochs;

o Momentum: 
• Add a fraction (between 0 and 1) of the previous weight update to the current update
• Helps accelerate in the relevant direction and dampen oscillations

o Weight decay: 
• Equivalent to L2 regularization (later in the lecture)



Optimizers: SGD, Adam, Adagram, RMSProp…

SGD (Stochastic Gradient Descent):
o Classic optimizer that updates the weights by taking a step in the direction of 

the negative gradient of the loss function

Can set various parameters such as moment

Adagrad (Adaptive Gradient Algorithm):
o Stored a running sum of the squares of past gradients and divides the learning 

rate by the square root of the running sum:

Pro: Adapts to size of gradients.    Con: Can adapt too much and stop learning!

RMSProp (Root Mean Square Propagation):
o More effective version of Adagrad, using a moving average of squared past 

gradients:

RMSProp tends to work better for very deep neural networks



Optimizers: SGD, Adam, Adagram, RMSProp…

Adam (Adaptive Moment Estimation):
Improves on Adagrad and RMSprob by combining both approaches with regard to 
past gradients:
o Keep a moving weighted average of both the past gradients and the squared 

past gradients (called first and second moments), and adjust the learning rate 
accordingly. 

o Corrects for initial bias in the moving averages, so tends to have more stable 
starts than other algorithms.

Punchlines: 
o SGD has many parameters which can be tuned for excellent performance, and 

may lead to better performance. 
o Adam is the default optimizer for many tasks because it tends to “work well out 

of the box” without a lot of tuning. 



Regularization: L1, L2, Dropout
Regularization attempts to prevent overfitting by preventing models from becoming too 

complex. There is a large variety of ways to accomplish this:

o Adding noise:  
• Produce random fluctuations in the data through augmentation; 
• The network generalizes instead of focusing on the details. 

o L1 Regularization (Lasso Regression):
• Adds a penalty proportional to the absolute value of the coefficients:

• This prevents the parameters from becoming too large, limiting their range. 

o L2 Regularization (Ridge Regression):
• Adds a penalty proportional to the square of the magnitude of the coefficients:

L2 is generally preferred, since L1 can force some parameters to 0. 



Regularization: L1, L2, Dropout

L2 Regularization is accomplished in Pytorch using the weight_decay parameter in the 

optimizer:

The effect is to add the following penalty term to the loss L calculated during training:

(L1 regularization is not implemented in Pytorch and you would have to DIY.)

Parameters of 
model



Regularization: L1, L2, Dropout

o Dropout
• During training, parameters are set to 0 with some probability p
• This prevents parameters from co-evolving and effectively memorizing the data
• The knowledge implicit in the data is generalized throughout the network and not 

localized in specific parameters

Note: Due to the 
random nature of 
dropout, different 
neurons will be 
dropped out for 
each data 
sample. 



Regularization: L1, L2, Dropout

Dropout in Pytorch is easily accomplished with a dropout layer build into the network 

geometry:



Layer and Batch Normalization

Layer Normalization:  For each output value from a layer:
o Compute its mean 𝜇 and standard deviation	𝜎 ;
o Normalize to mean 0 and standard deviation 1; and then
o Scale and shift it by two parameters learned during training.
This is done after every individual data sample.  
 

Batch Normalization is the same 
process, but applied to all layer 
outputs for a whole mini-batch. 

Normalization is also considered
to be a form of regularization, because it limits the range of parameters.



Layer and Batch Normalization

Why normalize layer and batch outputs?

o Helps gradient flow by avoiding disappearing or exploding gradients;

o Acts as a regularizer to avoid overfitting by introducing “useful noise” 
into the parameters; 

o Smooths the gradient landscape:

• Allows for higher learning rates and faster convergence;

• Makes weight initialization strategy less critical.

Normalization is particularly effective with deep networks. 



Layer and Batch Normalization

Batch Normalization in Pytorch:

class BatchNormNet(nn.Module):

    def __init__(self, input_dim, hidden_dim, output_dim):

        super(BatchNormNet, self).__init__()        

        self.fc1 = nn.Linear(input_dim, hidden_dim)

        self.bn1 = nn.BatchNorm1d(hidden_dim)

        self.fc3 = nn.Linear(hidden_dim, output_dim)

    def forward(self, x):

        x = self.fc1(x)

        x = self.bn1(x)             # note that normalization is

        x = F.relu(x)               # done before relu or sigmoid

        x = self.fc3(x)

        return x



Early Stopping
Your goal is to find the best possible model for your task, typically measured by
o Minimum loss score

o Maximum accuracy score

o Optimal value of some other metric (specificity, F1, etc.)

The consensus view is that “it depends” but as a first approximation, loss is better 
than accuracy. 

There is no reason to overfit by continuing past this point, and there are simple 
ways to implement early stopping:

o Stop when you reach some threshold of loss;

o Define a parameter patience, and stop training if your model does not 
improve (i.e., the loss does not decrease) after patience epochs. Typical 
values are 20 – 50 epochs. 



Early Stopping
Early Stopping in Pytorch:



Effect of Batch Size

You can’t do better in most cases than asking chatGPT to do the research and 
summarize findings on all these matters. Maybe it meditates on its own creation? 
Here is its excellent summary of the effect of batch size on training:



Effect of Batch Size


